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Schedule

‣ 08.30 - 10.30: Tutorial part 1 
‣ 10.30 - 11.00: Coffee break 
‣ 11.00 - 12.30: Tutorial part 2 

!

‣ In the interest of time, I cannot cover strategyproofness and 
preferences over lotteries. 
‣ If your are interested in these topics, you are welcome to attend 

the poster session and paper session 4b (both on Tuesday).
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Motivation
‣ What is “social choice theory”? 

‣ How to aggregate possibly conflicting preferences into collective 
choices in a fair and satisfactory way? 

‣ Origins: mathematics, economics, and political science 
‣ Essential ingredients 

- Autonomous agents (e.g., human or software agents) 
- A set of alternatives (depending on the application, alternatives can be 

political candidates, resource allocations, coalition structures, etc.) 
- Preferences over alternatives 
- Aggregation functions 

‣ The axiomatic method will play a crucial role in this tutorial. 
‣ Which formal properties should an aggregation function satisfy? 
‣ Which of these properties can be satisfied simultaneously?
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Plurality
‣ Why are there different voting rules? 

‣ What’s wrong with plurality (the most widespread voting rule) 
where alternatives that are ranked first by most voters win? 

‣ Consider a preference profile with 21 voters, who rank four 
alternatives as in the table below.  

!
!
!
!

‣ Alternative a is the unique plurality winner despite the fact that 
- a majority of voters think a is the worst alternative, 
- a loses against b, c, and d in pairwise majority comparisons, and 
- if the preferences of all voters are reversed, a still wins.
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5 Common Voting Rules
‣ Plurality  

‣ Used in most democratic countries, ubiquitous 
‣ Alternatives that are ranked first by most voters 

‣ Borda  
‣ Used in Slovenia, academic institutions, Eurovision song contest 
‣ The most preferred alternative of each voter gets m-1 points, the 

second most-preferred m-2 points, etc. Alternatives with highest 
accumulated score win. 

‣ Plurality with runoff  
‣ Used to elect the President of France 
‣ The two alternatives that are ranked first by most voters face off in 

a majority runoff.
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5 Common Voting Rules 
(ctd.)

‣ Instant-runoff  
‣ Used in Australia, Ireland, Malta, Academy awards 
‣ Alternatives that are ranked first by the lowest number of voters 

are deleted. Repeat until no more alternatives can be deleted. The 
remaining alternatives win. 

‣ In the UK 2011 alternative vote referendum, people chose plurality 
over instant-runoff. 

‣ Sequential majority comparisons  
‣ Used by US congress to pass laws (aka amendment procedure) 

and in many committees 
‣ Alternatives that win a fixed sequence of pairwise comparisons 

(e.g., ((a vs. b) vs. c), etc.).
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A Curious Preference Profile
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‣ Plurality: a wins 

‣ Borda: b wins 

‣ Sequential majority comparisons (a,b,c,d,e): c wins 

‣ Instant-runoff: d wins 

‣ Plurality with runoff: e wins

Example due to Michel Balinski
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Desirable Properties (Axioms)
‣ Anonymity 

‣ The voting rule treats voters equally. 
‣ Exchanging columns in the preference profile does not affect the outcome. 

‣ Neutrality 
‣ The voting rule treats alternatives equally. 
‣ Renaming the alternatives does not affect the outcome. 

‣ Monotonicity 
‣ A chosen alternative will still be chosen when it rises in individual preference 

rankings (while leaving everything else unchanged). 
‣ Pareto-optimality 

‣ An alternative will not be chosen if there exists another alternative such that all 
voters prefer the latter to the former. 

‣ Strategyproofness 
‣ No voter can obtain a more preferred alternative by misrepresenting his 

preferences.
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Anonymity Neutrality Monotonicity Pareto Strategy-
proofness

Plurality ✓ ✓ ✓ ✓ -

Borda ✓ ✓ ✓ ✓ -

Plurality  
w/ runoff ✓ ✓ - ✓ -

Instant-runoff ✓ ✓ - ✓ -

SMC ✓ - ✓ - -
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Outline

‣ Rational choice theory 
‣ May’s Theorem, Condorcet’s Paradox, Arrow’s Theorem 
‣ Three escape routes: 

‣ replace consistency with a variable-electorate condition 
- scoring rules (e.g., plurality, Borda) 

‣ weaken consistency 
- top cycle, uncovered set, Banks set, tournament equilibrium set 

‣ randomization 
- maximal lotteries
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Choice Theory
‣ A prerequisite for analyzing collective choice  

is to understand individual choice. 
‣ Let U be a finite universe of alternatives. 
‣ A choice function S maps a feasible set A⊆U  

to a choice set S(A)⊆A. 
‣ We require that S(A)=∅ only if A=∅. 
‣ For simplicity, we will focus on resolute (i.e., single-valued) choice 

functions for now. 
‣ Not every choice function complies with our intuitive 

understanding of rationality. 
‣ Certain patterns of choice from varying feasible sets may be deemed 

inconsistent, e.g., choosing a from {a,b,c}, but b from {a,b}.
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Preference and Maximality
‣ Rational decision-making process (note the order) 

‣ What is desirable? 
‣ What is feasible? 
‣ Choose the most desirable from among the feasible. 

‣ Binary preference relation R on U 
‣ xRy is interpreted as “x is at least as good as y”  
‣ For simplicity, we assume that R is asymmetric and complete:  

for all x≠y, either xRy or yRx. 
• Best alternatives 

‣ For a binary relation R and a feasible set A, 
Max(R,A)= {x∈A : there is no y such that yRx and not xRy}
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Rationalizable Choice
‣ S is rationalizable if there exists a binary relation R on U 

such that  
  S(A)=Max(R,A) for all A. 

‣ A natural candidate for such a relation is the base relation RS: 
x RS y ⇔ x∈S({x,y}) 

‣ In fact, S can only be rationalized by its base relation RS, which 
furthermore has to be transitive when S is resolute (as otherwise 
Max(R,A) may be empty). 

‣ The previously mentioned choice function S with 
S({a,b,c})={a} and S({a,b})={b} cannot be rationalized.
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Consistency
‣ It would be a nice if irrationality (i.e., the non-existence of a 

rationalizing relation) could be pointed out by finding 
inconsistencies. 
‣ Consistency conditions directly relate choices from variable 

feasible sets with each other. 
‣ A resolute choice function S satisfies consistency if for all 

A,B with S(A)⊆B⊆A implies S(B)=S(A). 
‣ If x is chosen in a feasible set, then it is also chosen in all subsets 

that contain x. 
- Example: Plurality does not satisfy consistency  

(when scores are computed for each feasible set). 
- S({a,b,c}) = {a} and S({a,b}) = {b}
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Rationalizability and  
Consistency

‣ Theorem (Sen, 1971): A resolute choice function is 
rationalizable iff it satisfies consistency. 

‣ For resolute choice functions, consistency is equivalent to 
Samuelson’s weak axiom of revealed preference (WARP) 
and the following condition due to Schwartz (1976):  
 
For all A,B and x∈A∩B,  x∈S(A∪B) ⇔ x∈S(A)∩S(B) 
 

15

A Bx

Amartya K. Sen



Axiomatic social choice theory (ACM EC 2014) Felix Brandt

From Choice to  
Social Choice

‣ N is a finite set of at least two voters. 
‣ For simplicity, we will assume |N| is odd whenever possible. 

‣ R(U) is the set of all transitive, complete, and anti-symmetric 
relations over U. 

‣ Every RN=(R1, ..., R|N|) ∈ R(U)N will be called a preference 
profile. 

‣ A social choice function (SCF) is a function f that assigns a 
choice function to each preference profile. 
‣ We will write f(RN,A) as a function of both RN and A. 
‣ Rationalizability and consistency conditions carry over to SCFs.
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May’s Theorem
‣ We first restrict attention to feasible sets of size two. 

‣ Let nxy = |{i∈N: x Ri y}| and define the majority rule relation as 
(x RM y) ⇔ nxy > nyx. 

‣ The majority rule SCF is define as f(RN,{x,y}) = Max(RM,{x,y}). 
‣ Theorem (May, 1952): Majority rule is the only resolute SCF 

on two alternatives that satisfies anonymity, neutrality, and 
monotonicity. 

‣ Majority rule is very uncontroversial. 
‣ All voting rules mentioned earlier coincide with majority rule on 

two alternatives. 
‣ Majority rule is strategyproof.

17
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The Condorcet  
Paradox

‣ Theorem (Condorcet, 1785; May, 1952): No anonymous, 
neutral, and monotonic resolute SCF is rationalizable when  
|U|≥3. 
‣ Proof sketch: Let f be an SCF with the desired properties  

and consider the following preference profile. 
‣ May’s theorem implies that Rf=RM. 
‣ RM is cyclic and therefore cannot rationalize f. 

‣ Alternative x is a Condorcet winner in A if x RM y for all y∈A. 
‣ Condorcet winners may not exist, but whenever they do they are 

unique. 
‣ Arrow’s theorem can be obtained by significantly weakening 

anonymity, neutrality, and monotonicity.
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From Condorcet to Arrow
‣ An SCF satisfies independence of infeasible alternatives (IIA) 

if the choice set only depends on preferences over 
alternatives within the feasible set. 

‣ An SCF satisfies Pareto-optimality if an alternative will not be 
chosen if there exists another alternative such that all voters 
prefer the latter to the former. 

‣ An SCF f is dictatorial if there exists a voter whose most 
preferred alternative is always uniquely chosen. 

‣ These conditions can be formally defined such that  
‣ IIA is weaker than neutrality, 
‣ Pareto-optimality is weaker than monotonicity, and 
‣ non-dictatorship is weaker than anonymity.
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Arrow’s Impossibility
‣ Theorem (Arrow, 1951): There is no SCF that satisfies IIA, 

Pareto-optimality, non-dictatorship, and rationalizability 
when |U|≥3. 

‣ Arrow’s theorem is usually presented in an alternative 
formulation for social welfare functions, i.e., functions that 
aggregate individual preference relations into a collective 
preference relation. 
‣ IIA, Pareto-optimality, and non-dictatorship can be appropriately 

redefined for SWFs (by considering the base relation). 
‣ Theorem (Arrow, 1951): Every SWF that satisfies IIA and Pareto-

optimality is dictatorial when |U|≥3.

20
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What now?
‣ Rationalizability (or, equivalently, consistency) is incompatible 

with collective choice when |U|≥3. 
‣ Dropping IIA offers little relief (Banks, 1995). 
‣ Dropping Pareto-optimality offers little relief (Wilson, 1972). 
‣ Dropping non-dictatorship is unacceptable. 

‣ A classic escape from Arrow’s impossibility is to consider 
restricted domains of preferences in which majority rule is 
transitive (such as single-peaked preferences). 

‣ In this tutorial, we will consider three other escape routes: 
‣ replace consistency with a variable-electorate condition 
‣ weaken consistency 
‣ randomization

21
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Escape Route #1 
Replace consistency  

with a variable-electorate condition

22
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Borda vs. Condorcet
‣ Jean-Charles Chevalier de Borda  

(1733 – 1799) 
‣ Mathematician, physicist, and sailor 
‣ Participated in the construction of the  

standard-meter (1/10,000,000 of the  
distance between the north pole and  
the equator) 

‣ Marie Jean Antoine Nicolas Caritat,  
Marquis de Condorcet (1743 – 1794) 
‣ Philosopher and mathematician 
‣ Early advocate of equal rights and  

opponent of the death penalty
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Scoring Rules and 
Condorcet Extensions

‣ Fix the feasible set A and let |A|=m. 
‣ A score vector is a vector s=(s1, ..., sm) of real numbers. 
‣ If a voter ranks an alternative at the ith position, it gets si points. 

‣ A scoring rule chooses those alternatives for which the 
accumulated score is maximal. 

‣ Examples 
‣ Borda’s rule: s=(m-1, m-2, ..., 0) 
‣ plurality rule: s=(1, 0, ..., 0) 

‣ An SCF f is a Condorcet extension if f(RN,A)={x} whenever x 
is a Condorcet winner in A according to RN. 
‣ Example (Copeland’s rule): Choose those alternatives that win 

most pairwise majority comparisons.
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Scoring Rules and  
Condorcet Extensions

‣ When |U|=2, majority rule is the only monotonic resolute 
scoring rule and the only Condorcet extension. 

‣ Proposition (Condorcet, 1785): Borda’s rule is no Condorcet 
extension when |U|≥3. 

‣ Theorem (Fishburn, 1973): No scoring rule is a Condorcet 
extension when |U|≥3. 

‣ Theorem (Smith, 1973): A Condorcet winner is never the 
alternative with the lowest Borda score. Borda’s rule is the 
only scoring rule for which this is the case.
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Variable Electorates

‣ One of the most remarkable results in social choice theory 
characterizes scoring rules in terms of a variable set of 
voters (“electorates”). 

• Reinforcement 
‣ All alternatives that are chosen simultaneously by two disjoint 

electorates are precisely the alternatives chosen by the union of 
both electorates.

26
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Characterization of  
Scoring Rules

‣ Reinforcement is the equivalent of consistency for a variable 
electorate! 
‣ Consistency:      x∈f(RN,A)∩f(RN,A’) ⇔ x∈f(RN,A∪A’)    [x∈A∩A’] 

‣ Reinforcement:  x∈f(RN,A)∩f(RN’,A) ⇔ x∈f(RN∪RN’,A)   [f(R,A)∩f(R’,A)≠∅] 

‣ Theorem (Smith, 1973; Young, 1975): A neutral and 
anonymous SCF is a scoring rule iff it satisfies continuity and 
reinforcement. 
‣ Loosely speaking, an SCF satisfies continuity if negligible fractions 

of voters have no influence on the choice set. 
‣ Continuity is a technical axiom that can be dropped when fixing 

an upper bound on the number of voters. 
‣ Reinforcement is the defining property of scoring rules.

27
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The Dilemma of  
Social Choice

‣ Theorem (Young and Levenglick, 1978): No Condorcet 
extension satisfies reinforcement when |U|≥3. 
‣ Two centuries after Borda and Condorcet, the rationales between 

both ideas were shown to be incompatible.  
 
 
 
 
 
 

‣ When aggregating preference relations to sets of preference 
relations, the intersection of these two sets contains exactly 
one neutral function: Kemeny’s rule! 

28
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Escape Route #2 
Weaken consistency

29



Axiomatic social choice theory (ACM EC 2014) Felix Brandt

Majoritarian SCFs
‣ An SCF is binary if the choice set only depends on the 

pairwise choices within the feasible set. 
‣ Binariness is stronger than IIA. 

‣ A majoritarian SCF is an SCF that satisfies anonymity, 
neutrality, monotonicity, and binariness. 
‣ The choice set only depends on the base relation, which is 

furthermore fixed to be majority rule (May’s theorem). 
‣ Majoritarianness strengthens all conditions from Arrow’s 

theorem except rationalizability/consistency. 
‣ Weakening consistency allows us to uniquely characterize 

appealing SCFs.
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Tournaments
‣ For a given preference profile, majority rule RM and a feasible 

set A define a tournament (A,RM), an oriented complete 
graph. 
‣ We say that b dominates a if b RM a. 
‣ Every tournament is induced by some preference profile 

(McGarvey’s, 1953). 
‣ We will write majoritarian SCFs as functions of tournaments 

(A,RM) rather than functions of (RN,A). 
‣ SCF f is said to be finer than SCF g if f ⊆ g. 
‣ Dominion D(x)={y∈B | x RM y} 
‣ Dominators D̅(x)={y∈B | y RM x}

31
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The Top Cycle
‣ Consistency can be weakened to expansion:  

B⊆A and S(A)∩B ≠∅ implies S(B) ⊆ S(A). 
‣ Theorem (Bordes, 1976): There is a unique finest majoritarian 

SCF satisfying expansion: the top cycle. 
‣ A dominant set is a nonempty set of alternatives B⊆A such 

that for all x∈B and y∈A\B, x RM y. 
‣ The set of dominant sets is totally ordered by set inclusion  

(Good, 1971). 
‣ Hence, every tournament contains a unique minimal dominant set 

called the top cycle (TC). 
‣ Also known as GETCHA (Schwartz, 1986) or Smith set  

(Smith, 1973) 
‣ TC is a Condorcet extension.

32

John I. Good



Axiomatic social choice theory (ACM EC 2014) Felix Brandt

Examples

33
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TC(A,RM)={c,e,f}TC(A,RM)={a,b,c} TC(A,RM)={a,b,c,d}
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TC Linear-Time Algorithm
‣ Algorithm for computing TCx, the minimal dominant set 

containing a given alternative x 
‣ Initialize working set B with {x} and then iteratively add all 

alternatives that dominate an alternative in B until no more such 
alternatives can be found. 

‣ Computing TCx for every alternative x and then choosing the 
smallest set yields an O(m3) algorithm where m=|A|. 
- A linear-time algorithm is O(m2) because the input is quadratic in m. 

‣ Alternatives with maximal degree  
are always contained in TC  
(and linear-time computable). 

‣ Hence, we only need to compute 
TCx for some x with maximal degree.

34

procedure TC(A, PM)
B� C � CO(A, PM)
loop

C � Sa⇥C DA\B(a)
if C = ⇤ then return B end if

B� B ⌅C
end loop
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Transitive Closure

‣ The essence of Condorcet’s paradox and Arrow’s 
impossibility is that the base relation fails to be transitive. 
‣ Why not just take the transitive (reflexive) closure RM*? 

‣ Theorem (Deb, 1977): TC(A,RM) = Max(RM*,A). 
‣ Consequences 

‣ RM* rationalizes the top cycle. 
‣ TC itself is a cycle. It is the source component in the DAG 

(directed acyclic graph) of strongly connected components. 
‣ Alternative linear-time algorithms using Kosaraju’s or Tarjan’s 

algorithm for finding strongly connected components
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Top Cycle and Pareto-
Optimality

‣ The top cycle is very large. 
‣ In fact, it is so large that it fails to be Pareto-optimal when 

there are more than three alternatives (Ferejohn & Grether, 
1977). 
 
 
 
 

‣ Since Pareto-optimality is an essential ingredient of all 
Arrovian impossibilities, this escape route is (so far) not 
entirely convincing.
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The Uncovered Set
‣ Expansion can be further weakened to weak expansion:  

S(A)∩S(B) ⊆ S(A∪B). 
‣ Theorem (Moulin, 1986): There is a unique finest majoritarian 

SCF satisfying weak expansion: the uncovered set. 
‣ Given a tournament (A,RM), x covers y (x C y), if D(y)⊂D(x). 

‣ Proposed independently by Fishburn (1977) and Miller (1980) 
‣ Transitive subrelation of majority rule 
‣ The uncovered set (UC) consists of all uncovered alternatives, i.e., 

UC(A,PM) = Max(C,A). 
‣ C rationalizes the uncovered set

37
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Examples

38
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UC(A,RM)={a,b,c}

TC(A,RM)={a,b,c,d}

UC(A,RM)={a,b,c}
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Properties of the  
Uncovered Set

‣ Since expansion ⇒ weak expansion, UC⊆TC. 
‣ UC is a Condorcet extension. 

‣ UC satisfies Pareto-optimality. 
‣ Theorem (B. and Geist, 2014): UC is the largest majoritarian SCF 

satisfying Pareto-optimality. 
‣ How can the uncovered set be efficiently computed? 

‣ Straightforward O(m3) algorithm that computes the covering 
relation for every pair of alternatives 

‣ Can we do better than that?

39
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Uncovered Set Algorithm
‣ Equivalent characterization of UC 

‣ Theorem (Shepsle & Weingast, 1984): UC consists precisely of all 
alternatives that reach every other alternative in at most two 
steps. 
- Such alternatives are called kings in graph theory. 

‣ Algorithm via matrix multiplication 
- Fastest known matrix multiplication algorithm  

(Vassilevska Williams, 2011): O(m2.3727) 
- Strongly based on a previous algorithm 

(Coppersmith & Winograd, 1990): O(m2.376) 
- Matrix multiplication is believed to be feasible  

in linear time (O(m2)).  

40

procedure UC(A, PM)
for all i, j 2 A do

if i PM j then mi j  1
else mi j  0 end if

end for

M  (mi j)i, j2A
U  (ui j)i, j2A  M2 + M + I
B {i 2 A | 8 j 2 A : ui j , 0}
return B

http://www.cs.berkeley.edu/~virgi/matrixmult.pdf


Axiomatic social choice theory (ACM EC 2014) Felix Brandt

0
BBBBBBBBBBBBBBBBB@

0 1 0 1 1
0 0 1 1 0
1 0 0 0 1
0 0 1 0 1
0 1 0 0 0

1
CCCCCCCCCCCCCCCCCA

2

+

0
BBBBBBBBBBBBBBBBB@

0 1 0 1 1
0 0 1 1 0
1 0 0 0 1
0 0 1 0 1
0 1 0 0 0

1
CCCCCCCCCCCCCCCCCA
+

0
BBBBBBBBBBBBBBBBB@

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1
CCCCCCCCCCCCCCCCCA
=

0
BBBBBBBBBBBBBBBBB@

1 1 2 1 1
1 1 1 1 2
1 2 1 1 1
1 1 1 1 1
0 1 1 1 1

1
CCCCCCCCCCCCCCCCCA

Uncovered Set Algorithm 
(Example)
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procedure UC(A, PM)
for all i, j 2 A do

if i PM j then mi j  1
else mi j  0 end if

end for

M  (mi j)i, j2A
U  (ui j)i, j2A  M2 + M + I
B {i 2 A | 8 j 2 A : ui j , 0}
return B
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Banks Set
‣ Weak expansion can be weakened to strong retentiveness: 

S(D̅(x)) ⊆ S(A) for all x∈A. 
‣ Theorem (B., 2011): There is a unique finest majoritarian 

SCF satisfying strong retentiveness: the Banks set. 
‣ A transitive subset of a tournament (A,RM) is a set of 

alternatives B⊆A such that RM is transitive within B. 
‣ Let Trans(A,RM) = {B⊆A | B is transitive}. 
‣ The Banks set (BA) consists of the maximal elements of all 

inclusion-maximal transitive subsets (Banks, 1985), i.e.,  
BA(A,RM) = {Max(RM,B) | B∈Max(⊇,Trans(A,RM))}

42

Jeffrey S. Banks 
1958-2000 
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Examples
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ba
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BA(A,RM)={a,b,c}

UC(A,RM)={a,b,c}

a b c

d

e f g

TC(A,RM)={a,b,c,d,e,f,g}

UC(A,RM)={a,b,c,d}

BA(A,RM)={a,b,c}

(All missing edges are pointing downwards.)
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Properties of the Banks Set
‣ Since expansion ⇒ weak expansion ⇒ strong retentiveness, 

BA⊆UC⊆TC. 
‣ As a consequence, BA is a Condorcet extension and satisfies 

Pareto-optimality. 
‣ Random alternatives in BA can be found in linear time by 

iteratively constructing maximal transitive sets. 
‣ Yet, computing the Banks set is NP-hard (Woeginger, 2003) 

and remains NP-hard even for 7 voters (B. et al., 2013). 
‣ Strong retentiveness can be further weakened to 

retentiveness: 
S(D̅(x)) ⊆ S(A) for all x∈S(A).
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Tournament  
Equilibrium Set

‣ Let S be an arbitrary choice function. 
‣ A non-empty set of alternatives B is S-retentive if  

S(D̅(x))⊆B for all x∈B. 
‣ Idea: No alternative in the set should be “properly”  

dominated by an outside alternative. 
‣ S is a new choice function that yields the union of all 

inclusion-minimal S-retentive sets. 
‣ S satisfies retentiveness. 

‣ The tournament equilibrium set (TEQ) of a tournament is 
defined as TEQ=TEQ. 
‣ recursive definition (unique fixed point of ring-operator) 
‣ Theorem (Schwartz, 1990): TEQ⊆BA.
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Properties of TEQ
‣ Computing TEQ is NP-hard (B. et al., 2010) and remains 

NP-hard even for 9 voters (B. et al., 2013). 
‣ The best known upper bound is PSPACE! 

‣ Theorem (Laffond et al., 1993; Houy 2009; B., 2011; B. and 
Harrenstein, 2011): The following statements are equivalent: 
‣ Every tournament contains a unique minimal TEQ-retentive set. 

(Schwartz’ Conjecture, 1990) 
‣ TEQ is the unique finest majoritarian SCF satisfying retentiveness.  
‣ TEQ satisfies monotonicity (and many other desirable properties). 

‣ All or nothing:  
Either TEQ is a most appealing SCF or it is severely flawed.
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Schwartz’s  
Conjecture

‣ There exists no counterexample with less than 13 
alternatives (154 billion tournaments have been checked).  
‣ TEQ satisfies all nice properties if |A|<13. 

‣ No counterexample was found by searching billions of 
random tournaments with up to 50 alternatives. 
‣ Checking significantly larger tournaments is intractable. 

‣ Many non-trivial weakenings of Schwartz’s conjecture are 
known to hold (Good, 1971; Dutta, 1988; B. et al., 2010;  
B., 2011). 

‣ Theorem (B., Chudnovsky, Kim, Liu, Norin, Scott, Seymour, 
and Thomassé, 2012): Schwartz’s conjecture is false.
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Aftermath
‣ Non-constructive proof relying on a probabilistic argument 

by Erdős and Moser (1964) 
‣ Neither the counter-example nor its size can be deduced from 

proof. 
‣ Smallest counter-example of this type requires about 10136 

alternatives. 
‣ More recently, a counter-example with 24 alternatives was 

found with the help of a computer (B. & Seedig, 2013).  
‣ In principle, TEQ is severely flawed. However, counter-

examples are so extremely rare that this has no practical 
consequences. 
‣ This casts doubt on the axiomatic method.
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Weakly Consistent SCFs

49

Top Cycle (1971) TC expansion O

Uncovered Set (1977) UC weak expansion O

Banks Set (1985) BA strong retentiveness 2

Tournament Equilibrium Set (1990) TEQ (retentiveness) 2

TC
UC
BA
TEQ



Axiomatic social choice theory (ACM EC 2014) Felix Brandt

Escape Route #3 
Randomization
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Social Decision Schemes

‣ A social decision scheme (SDS) maps a preference profile to 
a lottery (probability distribution) p∈Δ(A) over the alternatives. 

‣ Let g(x,y) = nxy - nyx be the majority margin of x and y. 
‣ Alternative x is a Condorcet winner if g(x,y)≥0 for all y∈A. 
‣ g can be straightforwardly extended to an  

expected majority margin g(p,q) = ∑x,y∈A p(x)·q(y)·g(x,y). 
‣ Lottery p is maximal if g(p,q)≥0 for all q∈Δ(A). 

‣ Maximal lotteries are guaranteed to exist due to the minimax 
theorem and are unique when |N| is odd (Laffond et al., 1997).
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Maximal Lotteries
‣ First studied by Kreweras (1965) and Fishburn (1984) 

‣ rediscovered by Laffond et al. (1993), Felsenthal and Machover 
(1992), Fisher and Ryan (1995), Rivest and Shen (2010) 

‣ g can be seen as a symmetric two-player zero-sum game. 
‣ Maximal lotteries are mixed minimax strategies. 

‣ Example 
 
 
 
 

‣ The unique maximal lottery is 3/5 a + 1/5 b + 1/5 c.
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a b c

a 0 1 -1
b -1 0 3

c 1 -3 0

2 2 1

a 
b 
c

b 
c 
a

c 
a 
b

Germaine Kreweras Peter C. Fishburn
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Properties of  
Maximal Lotteries (ML)

‣ ML can be efficiently computed via LP. 
‣ Pareto-dominated alternatives always get zero probability in 

every maximal lottery. 
‣ In fact, ML is even efficient with respect to stochastic dominance. 

- No lottery gives more expected utility for any utility representation 
consistent with the voters’ preferences (Aziz et al., 2012). 

‣ ML is weakly strategyproof in a well-defined sense  
(Aziz et al., 2012) 

‣ ML can be uniquely characterized using appropriate 
generalizations of consistency and reinforcement  
(Brandl et al., forthcoming). 
‣ The “dilemma of social choice” is resolved via randomization!
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Tutorial Summary
‣ Rational choice theory 
‣ May’s Theorem, Condorcet’s Paradox, Arrow’s Theorem 
‣ Three escape routes: 

‣ replace consistency with a variable-electorate condition 
- Young’s characterization of scoring rules (e.g., plurality, Borda) 

‣ weaken consistency 
- top cycle (expansion) 
- uncovered set (weak expansion) 
- Banks set (strong retentiveness) 
- tournament equilibrium set (retentiveness) 

‣ randomization 
- maximal lotteries (randomized Condorcet winners)
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